
Endless Runner Game
Workbook

Programming Tutorials by PyAngelo

Name:________________

1

Task 1 - Infinite Scrolling
Sketch Your Distant Background

We want the distant background to scroll forever to give the impression of movement.
Before we figure out how, let’s sketch what our background will look like using the grid
below. The image should be 1000 pixels wide and 300 pixels high.

Duplicate Your Image
To make it appear as though the background is scrolling infinitely, we need to duplicate
it, and attach it to the right hand edge so that the image is split into two components
that are exactly the same. This will make our background image 2000 pixels wide and
still 300 pixels high. Use an image program to create your distant background image
and export it as a png file with the name “distant_background.png”.

Animating the Background

To animate the background you will need to understand:

● How animation works for computers
● Infinite loops
● If statements
● The PyAngelo Sprite Library

2

Animation

Animation works by looping through the following actions in rapid succession:

● Clearing the screen
● Drawing your images on the screen
● Moving the position of some images in memory

Infinite Loops

In Python, you can create an infinite loop using a “while True:” loop. The block of code
that is indented below the “while True:” will be repeated forever.

If Statements

If statements allow you to execute a block of code only if a certain condition is met. We
will use an if statement to check if our object has passed the bottom of the canvas and
if so we’ll respawn it at the top. Example if statement:

if distant_background.x < -1000:

distant_background.moveTo(0, 0)

#The indented lines are only executed

if distant_background.x has a value less than -1000

PyAngelo Sprite Library

To include the PyAngelo sprite library in your sketch use the following code at the top of
your program:

from sprite import *

3

Infinite Scrolling Code
You need to move your image to the left each time through the animation loop until it’s x
position reaches minus (-) 1000. At this point you need to move the image back to it’s
starting position and then be able to continue scrolling in this manner forever! Use the
space below to write out the Python code to achieve this.

Scrolling Background - Write Down Your Code

4

Check Your Knowledge
1. The x-axis moves ___________________________ the
screen.

The y-axis moves ___________________________ the screen.

2. What does the following command do?

from sprite import *

__

3. What does the following command do?

setCanvasSize(1000, 300)

__

5

4. What does the following code do?

distant_background.draw()

distant_background.moveBy(-5, 0)

if distant_background.x <= -1000:

distant_background.moveTo(0, 0)

__

__

__

__

6

Parallax Scrolling

Parallax scrolling is a technique where background images scroll across the screen at a
slower pace than foreground images. This gives the impression of distance in a 2D
world. To implement this you need to draw the foreground image using the same
technique as for the distant background.

Firstly, sketch your foreground image below:

Now create your image in a graphics program ensuring you have:

● The canvas 1000 pixels wide and 300 pixels high
● A transparent background - so we can see the distant background behind it

Then as we did for the distant background we need to duplicate this image and attach it
to the right edge to end up with a single image that is 2000 pixels wide, 300 pixels high,
and is essentially two copies of the same image.

Lastly, you can now code this into your game by:

○ Creating a Sprite called ground using your image
○ Draw the ground by calling ground.draw()
○ Move your Sprite calling ground.moveBy() - this should move at a faster

speed than the distant background
○ Check if the ground’s x position is less than -1000 and if so move it back

to its starting position.

7

Task 2 - Animate our Hero
Make our hero look like they are walking
So far we have animated shapes and images simply by moving them. However, to make
our hero look like they are moving, we need multiple images. Remember that our main
character will collide with our enemies so it is important to fill as much of the space as
possible. Here are some examples:

Walking Image 1
If we switch between this image and the “walking Image 2”, it will
make our hero look like they are walking.

Walking Image 2
There doesn’t need to be a big change to make it look like our
character is walking.

Jumping
When our hero is jumping we can use a different image which lets
the user know they have pressed the jump key and adds to the
visual effect of our game.

Dead
It’s a good idea to have a different image for our hero when they
collide with an enemy. As with the jumping image, this gives
feedback to the user and adds more visually to our game.

Ducking
We will use the ducking image for an extension task.

8

Sketch Your Hero

Walking 1

Walking 2

Jumping

Dead

Ducking

9

Create Your Images
Now it’s time to use a graphics program to create all of your images. All of your images
should be the same size. It’s also important to ensure you have a transparent
background. Also remember that for collision detection the entire image is used, not
just where you draw. This means you should take up as much of the image with your
drawing as possible.

Coding our Animation
We used a Sprite to create our animated background:

distant_background = Sprite("distant_background.png", 0, 0)

This creates a sprite that has the the following properties:

● x - the x position of the upper left corner of the image
● y - the y position of the upper left corner of the image
● width - the width of the image
● height - the height of the image

It also has an image property. We can use this to change the image that the Sprite
displays when it is drawn to the screen using the draw() method. So to create an
animated Sprite we need to first create the Sprite. Then, to change the image, we first
need to load an image and save it to a variable. We do this with the following code:

panda = Sprite("pandaWalk1.png", 30, 200)

pandaWalk1 = loadImage("pandaWalk1.png")

pandaWalk2 = loadImage("pandaWalk2.png")

Now in our code we can update the image being drawn with the following code:

panda.image=pandaWalk1

Putting it all Together
We don’t want to switch the image of our hero every frame. Our approach should be to
only change the image every 10 frames. We can adjust this number as necessary. To do
this we need to count the frames using a variable.

10

frame = 0

while True:

frame = frame + 1

if frame % 10 == 0:

if panda.image == pandaRun1:

panda.image = pandaRun2

else:

panda.image = pandaRun1

Frame Rate
Remember those cool little flipbooks where a pad of paper had an image on every page,
and when you flipped through the pages quickly, the image would appear to animate
and move?

This is how video works. Whether digital or old-school film, video is a series of still
images that, when viewed in order at a certain speed, give the appearance of motion.
Each of those images is called a “frame.”

Frame rate, then, is the speed at which those images are shown, or how fast you “flip”
through the book. It’s usually expressed as “frames per second,” or FPS. So if a video is
captured and played back at 24fps, that means each second of video shows 24 distinct
still images.

For our animation the frame is how often the hero is switching between images to
create the animation that it is running.

11

Check Your Knowledge
1. What does the symbol % mean?

__

2. What does the following code do?

pandaWalk1 = loadImage("pandaWalk1.png")

__

__

3. What does the following code do?

frame = 0

while True:

frame = frame + 1

If frame % 100 == 0:

print(“Hello”)

__

__

12

4. Which of the following are properties of a Sprite?

● x
● y
● width
● height
● image

5. How can you change the image of a Sprite?

__

6. How do you draw a Sprite to the screen if it has been
created with the following code?

panda = Sprite(“pandaWalk1.png”, 100, 200)

__

13

Task 3- Jumping
We want to now add another animated state being our jumping state. This state should
only occur when the hero is jumping (the up arrow is pressed), and the hero should stop
the walking animation.

Constant Motion
To make a character move at a constant speed we simply change their position by the
same amount each time through the animation loop. For example the statement below
would move the panda up the screen by 10 pixels every time it was executed.

panda.moveBy(0, -10)

This however does not give the hero the illusion that they are jumping. It simply looks as
if they are moving up and down the screen. To create the illusion of jumping we need to
use gravity.

Implementing Gravity
Gravity pulls us back down to earth faster and faster. This means the amount we move
by each time through the loop changes. Hence instead of moving at a constant speed,
we need to change the amount we move by over time. We can do that in our animation
loop by using a constant variable called GRAVITY. It is in capitals as it does not change.
We also need to create a variable which changes according to how much the hero has
moved and therefore the gravity input. Let’s call that variable heroVelocity.

heroVelocity = -10

GRAVITY = 1

While True:

panda.moveBy(0, heroVelocity)

heroVelocity = heroVelocity + GRAVITY

The two bold lines above will need to be executed in our animation loop only when our
hero is in the jumping state.

14

frame panda.y pandaVelocity

0 200 -10

1 190 -9

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

15

Check Your Knowledge
Please answer the following questions based on the
code tracing activity above.

1. What is the final value of panda.y from the above
tracing activity?

__

2. What causes the while loop to end?

__

3. Why is the variable GRAVITY written in uppercase?

__

3. What does the following line of code do:

panda.moveBy(0, pandaVelocity)

__

16

4. What does the following line of code achieve?

pandaVelocity = pandaVelocity + GRAVITY?

__

__

5. What would happen if we changed line 4 to:

pandaVelocity = -30

__

__

6. What would happen if we changed line 5 to:

GRAVITY = 2

__

__

17

Task 4 - Enemies
Depending on the obstacle you create, you may or may not need animation.

As this wall does not change we only need a single image

For an animal such as this bee it would be good to create multiple
images that we can animate. In this case we change the bees wings to make it look like
it is flying when we switch between the two.

Sketch Your Enemies or Obstacles
Remember that the Sprite library performs collision detection by checking the bounding
boxes of the two sprites like so:

Hence, even if it does not look like two Sprites are touching, it may trigger a collision.
This means when you draw your images you should try to ensure they take up as much
of the image canvas as possible so your collision detection will be more realistic.

18

Adding the Enemies to Your Code
To add your enemies to your code you need to:

● Create the image or images using a graphics program
● Upload your image to the PyAngelo website
● Update your code to:

○ Create a Sprite using your image
○ Draw you sprite using the draw() method
○ Move your Sprite with the moveBy() method
○ Check if your hero overlaps the enemy with the overlaps() method
○ Check if the enemy has gone off the left edge of the canvas and if so

respawn it off the right edge of the canvas.

Check Your Knowledge
1. What parameters are passed to the overlaps
method?

__

2. How does the overlaps() method detect if there is a
collision?

__

__

19

3. If I have an image of a wall that is 30 pixels wide,
what is the maximum x position at which all of the wall
can be drawn on the left of the canvas so it can’t be
seen?

__

4. If I want to draw a Sprite off the right edge of my
canvas which is 1000 pixels wide and 300 pixels high,
what is the minimum x position I can draw it at?

__

5. Does the draw() method of a Sprite need any
parameters? Why or why not?

__

__

20

Task 5- Game States,
Scoring,and Sound Effects

Game States
We can create a separate animation loop for each of our game states:

● Introduction screen
● Play State
● Game over screen

Here’s sample code for the introduction screen:

Notice how the while loop continues until the boolean variable intro is set to False. This
occurs when the S key is pressed. At this point the while loop will end and the program
will move onto the next block of code.

If we wish to repeat our game after we have reached the game over screen, we can wrap
all of our game states in a while loop that never ends like so:

while True:

<code for intro screen>

<code for play state>

<code for game over screen>

21

Sound Effects
To create sound effects you need the following commands:

● loadSound() - to load a sound so it can be used by the program
● playSound() - to play the sound

Background Music
For any sounds or music that last for more than a few seconds, you need to play the
sounds outside the animation loop. Otherwise, you will be starting that sound multiple
times per second.

Check Your Knowledge
1. What does the following code do?

__

__

22

2. What causes the gameOver while loop to end in the
following code?

__

3. What does the following code do?

__

__

23

Checklist
As a minimum your game should:

● Have two background which scroll
● Have an animated hero which updates with frames
● Use gravity and velocity, with hero state for the hero to jump
● Have an enemy which moves across the screen and respawns
● Detect collisions between your hero and enemies
● Have a scoring system
● Have a start screen and end screen
● Include music and sound effects

Extension possibilities:
● Allow players to restart the game from the end screen
● Add different types of enemies
● Add more than a single enemy on the screen at a time
● Add the ability to make your hero duck as well as jump
● Increase the speed of the game when you reach a certain score
● Add lives rather than instant death
● Add a high score feature (this can't be saved. It is just while the game is running.

You must be able to restart your game within the game for this to work)
● Add pickups (e.g. score bonus, extra life, invincibility hero state for a set time,

speed up or slow down)
● Add nighttime and daytime modes
● Create a help screen which provides people with instructions for your game

	Name:
	Check Your Knowledge:
	The yaxis moves:
	from sprite import:
	setCanvasSize1000 300:
	1:
	to its starting position: Off
	1 What does the symbol mean:
	pandaWalk1 loadImagepandaWalk1png 1:
	printHello 1:
	1902:
	92:
	1903:
	93:
	1904:
	94:
	1905:
	95:
	1906:
	96:
	1907:
	97:
	1908:
	98:
	1909:
	99:
	19010:
	910:
	19011:
	911:
	19012:
	912:
	19013:
	913:
	19014:
	914:
	19015:
	915:
	19016:
	916:
	19017:
	917:
	19018:
	918:
	19019:
	919:
	19020:
	920:
	19021:
	921:
	19022:
	922:
	tracing activity:
	2 What causes the while loop to end:
	3 Why is the variable GRAVITY written in uppercase:
	pandamoveBy0 pandaVelocity:
	pandaVelocity pandaVelocity GRAVITY 1:
	pandaVelocity 30 1:
	GRAVITY 2 1:
	Update your code to: Off
	method:
	collision 1:
	seen:
	what is the minimum x position I can draw it at:
	parameters Why or why not 1:
	1_3:
	1_4:
	code1:
	Image2_af_image:
	Image3_af_image:
	Image4_af_image:
	Image5_af_image:
	Image6_af_image:
	Check Box8: Off
	Check Box9: Off
	Check Box10: Off
	Check Box11: Off
	Check Box12: Off
	Text13:
	Text14:
	Check Box15: Off
	Check Box16: Off
	Check Box17: Off
	Check Box18: Off
	Check Box19: Off
	Check Box20: Off
	Check Box21: Off
	Check Box22: Off

