
Animating Shapes
Workbook

Programming Tutorials by PyAngelo

https://www.pyangelo.com/tutorials/animating-shapes

Name:________________

https://www.pyangelo.com/tutorials/animating-shapes

2

Task 1 - Variables
Initialising Variables

In Python, variables are used to store information. Variables often store information that
changes as our program runs. Each variable is given a name and a value. To set the
value stored by the variable we use the assignment operator (=). In the following
program, line 4 takes the value 20 and stores it in the variable x.

setCanvasSize(640, 360)
background(128, 0, 128)
fill(255, 255, 0)
x = 20
circle(x, 180, 20)

In Python the assignment operator is the equals sign (=) but it is important to note that
this does not have the same meaning as in mathematics. When you see a line of code
like:

x = 20

You can read this as “x gets the value 20”. Now that this variable has been created and
holds the value 20, we can use it in subsequent commands. When the computer reads
the fifth line of code, it finds the “x” and then checks if a variable called x has been set.
Since in our example we have already assigned x the value of 20, the program uses the
value 20 instead of x (what would happen if we had not set the value of x?).

Type the program into the PyAngelo editor and click the start button. You will see the
circle being drawn with its centre at (20, 180).

Now update the program to set x to 340 like so:

setCanvasSize(640, 360)
background(128, 0, 128)
fill(255, 255, 0)
x = 340
circle(x, 180, 20)

3

Now that x holds the value 340, the circle is drawn at (340, 80).

Note: Initialising a variable is a technical programming term that means create a
variable and give it an initial value.

Updating Variables

Once a variable has been initialised, we can update the value it stores. For example the
following program creates a variable called x and updates it numerous times:

setCanvasSize(640, 360)
background(128, 0, 128)
fill(255, 255, 0)
x = 20
circle(x, 180, 20)
x = 80
circle(x, 180, 20)
x = 140
circle(x, 180, 20)
x = 200
circle(x, 180, 20)
x = 260
circle(x, 180, 20)
x = 320
circle(x, 180, 20)

Notice that each time the circle is drawn, x has a new value and hence the circle is
drawn in a new position.

Task 1 Challenge

Your task is to :

● Create a canvas that is 400 pixels wide and 400 pixels high
● Set the background colour of the canvas to a colour of your choice
● Create a variable named x and set its value to 0
● Create a variable named y and set its value to 0

4

● Draw a square at (x, y) with a length and width of 40
● Give x a value of 180 and y a value of 180
● Draw a square at (x, y) with a length and width of 40
● Give x a value of 360 and y a value of 360
● Draw a square at (x, y) with a length and width of 40

Your final sketch should look like this when run:

5

Check Your Knowledge - Task 1

Question 1a

A variable has a ____________ and stores ________________.

Question 1b

What symbol is the assignment operator in Python?

__

Question 1c

How would you set a variable called score to have a
value of zero?

__

Question 1d

What is the final value of the variable named cost when
the following lines of code are run:

cost = 20

cost = 50

__

6

Check Your Knowledge Answers - Task 1

Question 1a

A variable has a name and stores information.

Question 1b

=

Question 1c

score = 0

Question 1d

50

7

Task 2 - Animation the
Hard Way

Assignment Operator

x = 20

As we mentioned earlier, the line above takes the value on the right hand side of the
assignment operator, and stores it in the variable on the left hand side.

x = x + 10

The line above does something similar. It takes the value on the right side which in this
case is whatever is stored in the variable x plus 10. If x was 20, then after we add 10 we
get the value 30, and this is then stored in the variable x. Hence the line above always
adds 10 to the current value of x, whatever that is. Hence we can modify a program
from Task 1 to use this type of assignment.

setCanvasSize(640, 360)
background(128, 0, 128)
fill(255, 255, 0)
x = 20
circle(x, 180, 20)
x = x + 60
circle(x, 180, 20)
x = x + 60
circle(x, 180, 20)
x = x + 60
circle(x, 180, 20)
x = x + 60
circle(x, 180, 20)
x = x + 60
circle(x, 180, 20)

8

sleep(seconds)

The sleep function pauses our program for the number of seconds we specify. Let’s use
the sleep function to create a one second delay after we draw each circle.

setCanvasSize(640, 360)
background(128, 0, 128)
fill(255, 255, 0)
x = 20
circle(x, 180, 20)
sleep(1)
x = x + 60
circle(x, 180, 20)
sleep(1)
x = x + 60
circle(x, 180, 20)
sleep(1)
x = x + 60
circle(x, 180, 20)
sleep(1)
x = x + 60
circle(x, 180, 20)
sleep(1)
x = x + 60
circle(x, 180, 20)
sleep(1)

Our First Animation

To create an animation we need to repeat the following steps over and over again:

● Clear the screen
● Update the position of the circle (the x variable in this example)
● Draw the circle
● Sleep for a small amount of time

9

setCanvasSize(640, 360)
fill(255, 255, 0)

background(128, 0, 128)
x = 20
circle(x, 180, 20)
sleep(1)

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

Task 2 Challenge

Modify the program above so that the ball moves across the entire screen. Try adjusting
the delay in seconds after each circle is drawn by modifying the sleep(1) command.
What happens if you set the delay to 2 seconds? What happens if you set the delay to
0.1 seconds? Try modifying how much you add to x each time.

10

Check Your Knowledge - Task 2

Question 2a

What is the final value of the variable score after the
following 3 lines of code are run?

score = 0

score = score + 100

score = score + 50

Question 2b

What does the following command do?

sleep(10)

Question 2c

Why do we need to clear the screen before drawing our
objects in their new positions in order to create an
animation?

Question 2d

What is the final value of the variable x after the
following 2 lines of code are run?

x = 20

x = x + 60

11

Check Your Knowledge Answers - Task 2

Question 2a

150

Question 2b
It causes the program to sleep for 10 seconds before executing the next line of code

Question 2c

If we did not clear the screen, you would see all the drawings of the objects at their old
positions as well as the new drawing in its current position. The clearing of the screen
followed by drawing an object in a different position is what creates the illusion of
motion.

Question 2d
80

12

Task 3 - Animation Loop
forever:

In PyAngelo there is a special command that does not exist in Python. It is the forever
command and it must be followed by a colon. The colon indicates that there is a block
of code that will be underneath this line and indented. In Python the normal way of
indenting code is using the TAB key and having the TAB key set to 4 spaces.

With the forever loop, the block of code underneath and indented will be repeated
forever! This is what we call an infinite loop because it never ends. That also means that
any code written below this loop (code that is not indented) will never be reached
because the program keeps repeating the indented block of code.

This infinite loop is not always a good idea as the program never ends. However, for
animations it can be useful. In fact, when creating animations we call this type of infinite
loop the animation loop.

A basic formula for animating an object is:

1. Clear the canvas
2. Update the position of the object
3. Draw the object in its new position
4. Sleep for a small amount of time

Did you notice in our last task, we repeated the following code over and over:

background(128, 0, 128)
x = x + 60
circle(x, 180, 20)
sleep(1)

13

Instead of typing the same 4 lines many times, let’s see if we can rewrite our animation
to take advantage of an animation loop using the forever command.

setCanvasSize(640, 360)
fill(255, 255, 0)
x = -1
speedX = 1
delaySeconds = 0.005

forever:
Step 1 - Clear the canvas
background(128, 0, 128)
Step 2 - Update the position of the circle
x = x + speedX
Step 3 - Draw the circle in its new position
circle(x, 180, 20)
Step 4 - sleep for a small amount of time
sleep(delaySeconds)

This is a much more efficient way to code our animation. The 4 steps of clearing the
canvas, updating the position of the circle, drawing the circle, and sleeping for a small
amount of time are repeated forever. We know it is these lines of code that are repeated
because they are indented and underneath the forever: command.

Well done. You have just coded your first animation!

Task 3 Challenge

Modify the program above so that the ball starts at the bottom left of the screen and
moves diagonally up and across the canvas. See if you can make the ball move faster
across the screen.

14

Check Your Knowledge - Task 3

Question 3a

What special character is required immediately after
forever, and what does it signify?

Question 3b

What is wrong with the following lines of code?

forever:

circle(50, 75, 10)

sleep(0.005)

Question 3c

What is the first step each iteration of the animation
loop?

Question 3d

What is the last step each iteration of the animation
loop?

Question 3e

Which key is recommended in PyAngelo to create
indented code?

15

Check Your Knowledge Answers - Task 3

Question 3a

The colon character (:). This signifies that there will be an indented block of code below
which due to the forever loop will be repeated infinitely.

Question 3b
There needs to be a block of code underneath the forever: command that is indented.
The code should be written as:

forever:

circle(50, 75, 10)

sleep(0.005)

Question 3c

The first step in the animation loop is to clear the canvas.

Question 3d
The last step in the animation loop is to sleep for a small amount of time. This allows
your browser to render all of the objects to the screen and also allows your browser to
respond to user events such as mouse clicks or keyboard input.

Question 3e
The TAB key is recommended for creating indented code in PyAngelo. In the online
editor the TAB key is configured to insert 4 spaces. If you type a colon at the end of a
line and hit the ENTER key, the editor will automatically create an indentation for you.

16

Task 4 - Respawning Ball
In our previous task we managed to create an animation that moved the ball from left to
right. However, when the ball went off the right edge of the screen it simply kept going
further and further off the screen. Since the animation loop repeats forever the program
does not end by itself and so a good idea might be to make the ball respawn from the
left edge whenever it has gone off the right edge.

Checking if the ball has gone off the canvas

To respawn the ball means to reset its position once it has left the canvas. This means
after we update the variable storing the position of the ball, we should check to see if
that would take it off the right edge. If this is the case we can set the value of the
variable to be such that the ball’s position is now to the left side of the canvas.

If statements

In Python, if statements are used to take different actions based on a condition. This is
why they are often referred to as conditional statements. The condition must be one
that is either True or False. If the condition is True, then the block of code that is
underneath and indented will be executed. If the condition evaluates to False, the
indented block of code will be skipped and not run.

Here is an example if statement:

if x >= 660:
x = -20

Note that the statement starts with the keyword if followed by a condition, and then
finally a colon (:). The colon signifies there will be an indented block of code below that
gets executed only if the condition evaluates to True. The above if statements checks if
the x variable is greater than or equal to 660. If that is True, then the x variable gets the
value -20. In our previous task we used the variable x to store the location of the centre

17

of the circle. Hence the if statement would in effect cause the ball to respawn from the
left edge.

Here is the complete program that uses if statements to respawn the ball:

setCanvasSize(640, 360)
fill(255, 255, 0)
x = -1
speedX = 1
delaySeconds = 0.005

forever:
Step 1 - Clear the canvas
background(128, 0, 128)
Step 2 - Update the position of the circle
x = x + speedX
if x >= 660:
x = -20

Step 3 - Draw the circle in its new position
circle(x, 180, 20)
Step 4 - sleep for a small amount of time
sleep(delaySeconds)

Types of checks

To check if a value is equal to another value we need to use the equivalence operator
which is two equals signs (==). We do not use a single equals sign as this is used for
assignment when we wish to set the value of a variable. Here is an example that checks
if the variable x is equal to 50 and if so changes the fill colour to yellow.

if x == 50:
fill(255, 255, 0)

18

Here is a list of the comparison operators you can use:

Operator Meaning

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equivalent to

!= Not equal to

Task 4 Challenge

Modify the respawning ball program from above so that the ball starts at the bottom left
of the screen and moves diagonally up and across the canvas. Add in another check to
see if the ball has gone off the top of the canvas and if so respawn the ball at the
bottom. You will need to create a new variable to keep track of the y position of the ball
and add an additional if statement for the check.

19

Check Your Knowledge - Task 4

Question 4a

What special character is required at the end of an if
statement, and what does it signify?

Question 4b

What is wrong with the following lines of code?

if y >= 380

y = -20

Question 4c

What is the value of score after the following code is
run?

score = 50

timeLeft = 10

if timeLeft >= 10:

score = score + 100

if timeLeft < 5:

score = score - 50

Question 4d

Which operator is used to test if a variable is greater
than a value?

20

Question 4e

Which operator is used to test if a variable is equivalent
to a value?

21

Check Your Knowledge Answers - Task 4

Question 4a

The colon character (:). This signifies that there will be an indented block of code below
which will only be executed if the condition of the if statement evaluates to True.

Question 4b
There needs to be a colon at the end of the line beginning with if. Also there needs to be
a block of code underneath the if line that is indented. The code should be written as:

if y >= 380:

y = -20

Question 4c

150. The first if condition evaluates to True and hence the 100 is added to the value of
the score variable. The second if condition evaluates to False and hence the indented
line of code decrementing score by 50 is not run.

Question 4d
>

Question 4e
==

22

Task 5 - Sunrise and
Sunset

Now it’s time to put our skills to the test. Our task is to create a graphical program that
displays a sunrise followed by a sunset over and over again. Here is some starter code
that we will work from:

setCanvasSize(800, 400)
x = 400
y = 400

forever:
Sky
fill(250, 198, 104)
rect(0, 100, 800, 300)

Sun
fill(239, 142, 56)
circle(x, y, 50)

Water
fill(75, 245, 251)
rect(0, 0, 800, 100)

sleep(0.005)

If you type this into the PyAngelo editor and run the program you will see the following
drawn to the canvas:

23

Coding the Sunset

To code the sunset we need to adjust the variables x and y. The variable x needs to
increase each time through the animation loop in order to move the sun to the right. The
variable y needs to decrease each time through the animation loop in order to move the
sun downwards. See if you update the program to add this functionality.

Coding the Sunrise

In order to code the sunrise we need to first check when the sunset has finished. One
way to do this is by checking the value of the x variable. If the value of the x variable is
greater than 800, we know the sun has moved to the bottom right corner of the screen
and will be hidden behind the water. The reason it will be hidden behind the water is the
order that the objects are drawn. Since the water is drawn last, it will be drawn on top of
the sun.

Your task is to add an if statement that checks if the sunset has completed and if so it
should set the x and y variables both to 0 to position the sun ready to rise. As the sun is
now meant to be rising, we should no longer decrement the y variable but instead

24

increment it. A good way to do this is by creating a variable that holds the y direction of
1 or -1 and using this variable to update y.

yDir = -1
y = y + yDir

The code above decrements the value of y since yDir is a negative number. The line y = y
+yDir can be used inside the animation loop. If we update the value of yDir to be positive
1, then the line y = y + yDir will now increment the value of y by 1 which is what we want
for our sunrise. You should switch the value of the variable yDir when the sunset has
finished. Note that you will also need an if statement to check when the sunrise has
finished and then switch the value of yDir back to negative 1 to start the sunset once
again.

Try to modify your sketch so that the sun continuously rises and sets by implementing
the ideas we discussed above in your code. Once you’ve had a go, take a look at how I
modified the code to incorporate these changes below:

setCanvasSize(800, 400)
x = 400
y = 400
yDir = -1

forever:
background(0, 0, 0)
Sky
fill(250, 198, 104)
rect(0, 100, 800, 300)

Sun
x = x + 1
y = y + yDir
if x > 1000:
x = 0
y = 0
yDir = 1

if x == 400:
yDir = -1

fill(239, 142, 56)
circle(x, y, 50)

25

Water
fill(0, 0, 0)
rect(0, 0, 800, 100)
fill(75, 245, 251)
rect(0, 0, 800, 100)

sleep(0.005)

Task 5 Challenge

Modify the sunrise and sunset sketch so that the colours fade to black as the sun sets,
and brighten as the sun rises. One way to approach this is by using the alpha argument
to the fill() function. The alpha argument lets you set the transparency in the range of 0
to 1. Specifying 0 means the colour is fully transparent and hence will not be seen.
Setting the value to 1 means the colour is not at all transparent and nothing behind it
will be seen. If you were to make the background black before drawing the sky and
water, you could then set the alpha value to less than 1 to start to see the black
background through the colours. If the alpha is set to 0 you would only see the black
background. Take a look at the reference page for more information on the alpha
argument to the fill() function. If you need help with this challenge then watch the
associated video on the PyAngelo website:
https://www.pyangelo.com/tutorials/animating-shapes/sunrise-and-sunset

http://www.pyangelodev.com/reference#fill
https://www.pyangelo.com/tutorials/animating-shapes/sunrise-and-sunset

26

Check Your Knowledge - Task 5

Question 5a

What will the value of y be after the following lines of
code are run?

y = 401

yDir = -1

y = y + yDir

Question 5b

What does the following lines of code do:

if y == 400:

yDir = -1

Question 5c

What function does the fourth argument to the fill()
function have and what range of values can you give it?

fill(255, 255, 0, 0.5)

Question 5d

What effect does the order objects are drawn in have in
a PyAngelo sketch?

27

Check Your Knowledge Answers - Task 5

Question 5a

400

Question 5b

The code checks to see if the value of the variable y is equivalent to 400 and if so it
updates the value of yDir to be -1. If the value of y is not equivalent to 400 then the value
of yDir is not changed. The point of this code is to change the value of yDir to negative 1
so that the sun will start moving down the screen when the line y = y + yDir is executed

Question 5c

The fill() function, and other colour functions such as stroke() and background(), can be
passed a fourth argument that specifies the alpha of the colour. The value specified can
be between 0 and 1. A value of 0 means the colour is fully transparent and a value of 1
means the colour is not transparent at all. Hence a value of 0.5 would mean the colour
is displayed but is partially transparent and hence colours below can be seen.

Question 5d
The order objects are drawn in is important. When you draw an object, it will be drawn
on top of any previous objects on the canvas that it overlaps with.

28

Task 6 - mouseX and
mouseY Variables

mouseX and mouseY

The mouseX and mouseY variables are automatically created and updated by PyAngelo.
mouseX holds the x position of the mouse and mouseY holds the y position. We can
use these variables wherever we would use variables we have created ourselves
including for drawing shapes. The following sketch draws a circle wherever the mouse
currently is:

setCanvasSize(640, 360)

forever:
background(0, 0, 0)
fill(255, 0, 128)
circle(mouseX, mouseY, 20)
sleep(0.005)

Do not clear the canvas in the animation loop

What do you think will happen if we move the background(0, 0, 0) function call to
outside the forever loop? Type the following into your editor and run the sketch to see
what happens:

setCanvasSize(640, 360)
background(0, 0, 0)

forever:
fill(255, 0, 128)
circle(mouseX, mouseY, 20)
sleep(0.005)

29

Since the canvas is only cleared at the start of the program, every circle that is drawn
stays on the canvas. Each time through the animation loop a new circle is drawn where
the mouse is currently located. In fact, this could be the start of a paint program.

mouseIsPressed

PyAngelo also has a variable called mouseIsPressed. This variable is what is known as
a boolean variable as it can have only two values, True or False. Since the variable is
either True or False, we can use it in an if statement to check if the mouse is currently
pressed. We can modify the program above to clear the screen whenever the
mouseIsPressed like so:

setCanvasSize(640, 360)
background(0, 0, 0)

forever:
fill(255, 0, 128)
circle(mouseX, mouseY, 20)
if mouseIsPressed:
background(0, 0, 0)

sleep(0.005)

Task 6 Challenge

Modify the above sketch so that a circle is only drawn when the mouse is being pressed.
Ensure that the circle is still drawn at the location of the mouse.

30

Check Your Knowledge - Task 6

Question 6a

What is the name of the inbuilt variable that keeps
track of the current x position of the mouse?

Question 6b

What does the following lines of code do:

if mouseIsPressed:

fill(255, 255, 0)

Question 6c

What is the name of the inbuilt variable that keeps
track of the current y position of the mouse?

Question 6d

What is the effect of moving the background() function
call from inside the forever loop to above it?

31

Check Your Knowledge Answers - Task 6

Question 6a

mouseX

Question 6b

It sets the fill colour to yellow if the mouse is being pressed. If the mouse is not pressed
then the fill() function is not called.

Question 6c

mouseY

Question 6d
If the background function is not called inside the forever loop then the canvas is not
cleared. This has the effect that everything that is drawn on the canvas remains on the
canvas.

32

Task 7 - if, elif, and else
If and Else

Earlier we learned how we could use an if statement to execute some code only if the
specified condition was True. We can extend the if statement to run some code if the
condition was not True by using the else clause.

setCanvasSize(640, 360)
fill(255, 0, 128)

forever:
background(0, 0, 0)
if mouseX > 320:
fill(255, 255, 0)

else:
fill(255, 0, 255)

circle(320, 180, 20)
sleep(0.005)

The above sketch sets the fill colour to yellow if the mouseX variable is greater than 320,
however if the mouseX is not greater than 320, meaning it is 320 or less, then the fill
colour is set to purple. Notice that the “else:” line needs a colon to indicate that there
will be a block of code underneath and indented.

The important thing to remember is that the indented block of code below the “else:”
line is only executed if the original condition evaluates to False. With the new “else:”
clause we can execute two different sections of code. What happens if we need more
options?

Elif

We can add more options using the “elif” clause. An elif allows us to specify a new
condition to evaluate. We can add as many elif conditions as required. The following
program sets the fill colour to a different value based on the location of the mouse.

33

setCanvasSize(640, 360)
fill(255, 0, 128)

forever:
background(0, 0, 0)
if mouseX > 300:
fill(255, 0, 0)

elif mouseX > 200:
fill(0, 255, 0)

elif mouseX > 100:
fill(0, 0, 255)

else:
fill(255, 255, 0)

circle(320, 180, 20)
sleep(0.005)

The combination of the starting if, as many elif’s as required and an optional else are
considered a single statement and as soon as the first matching condition is found, the
indented block of code is executed and then the code skips to the end of the if
statement and then executes the next line of code. This is important to understand
because if you look at the first condition above, it checks if mouseX is greater than 300.
The next condition checks if the mouseX is greater than 200. However, if the mouseX is
greater than 300 it must also be greater than 200 but that does not matter because only
the indented block associated with the first matching condition is executed. If no
conditions evaluate to True then the “else:” clause will be executed.

Task 7 Challenge

Modify the above sketch so that the background colour is changed based on the y
position of the mouse.

34

Check Your Knowledge - Task 7

Question 7a

How many elif clauses can you include in an if
statement?

Question 7b

What will be the colour of the circle after the following
code is run?

setCanvasSize(640, 360)

score = 10
if score > 20:
fill(255, 0, 0)

elif score > 10:
fill(0, 255, 0)

else:
fill(0, 0, 255)

circle(100, 200, 20)

Question 7c

What will be the value of savings after the following
code is run? What is the logic error in this code?

savings = 100
if savings > 20:
savings = savings + 10

elif saving > 50:
savings = savings + 20

35

Check Your Knowledge Answers - Task 7

Question 7a

As many as required. There is no limit on the number of elif clauses you can add to an if
statement.

Question 7b

Blue. Since the score is not greater than 20 and also is not greater than 10, the else
condition will be executed which sets the fill colour to (0, 0, 255) which is a blue colour.

Question 7c

The value of savings will be 110. The logic error is that the savings = savings + 20 line
will never execute. This is because savings is greater than 20 and hence the first
conditional block will be executed and the rest of the if statement will be ignored. One
way to fix this would be to change the code to:

savings = 100
if savings > 50:
savings = savings + 20

elif saving > 20:
savings = savings + 10

36

Task 8 - Random
Screensaver

Using Other People’s Code

One advantage of using Python is that there is a lot of code that other people have
written that we can use in our own programs. Code is usually bundled together into
what is called a library or a module. One useful module is called random and it contains
a bunch of functions that let us introduce randomness into our programs.

Random Library

One way to import a module is to use the from statement.

from random import *

This imports the entire random library into your code. The “*” is used to represent
everything. If you only wish to use a single function you can specify that function
instead of the “*”. For example, in our next task we will be using the randint function
which picks a random integer value. To import this function the following code is used.

from random import randint

By convention these statements are usually included at the top of your program.

randint()

The randint() function takes 2 arguments; the minimum number and the maximum
number. It returns a random integer between these two numbers which you can store in
a variable. An integer is a whole number such as 10, 0, or -3. An example of a number
that is not an integer is 3.14 as it contains a decimal point.

37

from random import randint
num = randint(1, 10)

The above code selects a random number between 1 and 10 and stores it in the variable
num.

A Screensaver

A screensaver is a program that fills the screen with moving images or patterns when
the computer has been idle for a designated period of time. With older monitors this
was in fact to save the screen. These days the monitors do not need to be saved!
However, it is fun to build a screensaver and we will do so by using our new found friend,
the randint() function. Type the following code into the PyAngelo editor and run it. You
should see circles of random sizes being drawn in random positions.

from random import randint
setCanvasSize(640, 360)
background(0, 0, 0)
forever:
fill(180, 0, 180)
x = randint(0, 640)
y = randint(0, 360)
radius = randint(5, 30)
circle(x, y, radius)
sleep(0.1)

Take the time to read each line of code carefully and ensure you understand what is
happening in the program.

Task 8 Challenge

Modify the screensaver program so that each circle is a random colour. To do this you
will need to modify the fill() function. Remember that the fill() function takes 3
arguments, the amount of red, green, and blue. The amount is a number from 0 to 255.
So one way to achieve random colours is to pick 3 random integers between 0 and 255
and use these in the fill() function. If you need help with this challenge then watch the

38

associated video on the PyAngelo website: Random Screensaver | Animating Shapes |
PyAngelo

Here are some ideas to experiment with your screensaver program:

● Add some transparency to the circles’ colour
● Remove the stroke or border from each circle
● 50% of the time draw a circle and 50% of the time draw a square

width and height Variables

In PyAngelo, when you call the setCanvasSize() function, two variables are automatically
created for you.

● width - this variable holds the width of the canvas
● height - this variable holds the height of the canvas

It is good programming practice to use these variables rather than hardcoding a number
because if you at some stage decide to change the width and height of the canvas
these variables are automatically updated and so you won’t need to modify all the
occurrences of your hard coded numbers. So in our screensaver program we should use
the following lines of code when selecting a random position for our circle:

x = randint(0, width)
y = randint(0, height)

https://www.pyangelo.com/tutorials/animating-shapes/random-screensaver
https://www.pyangelo.com/tutorials/animating-shapes/random-screensaver

39

Check Your Knowledge - Task 8

Question 8a

What does the “*” represent in the following statement:

from random import *

Question 8b

What will be stored in the variable x after the following
code is run?

from random import randint
x = randint(1, 100)

Question 8c

What statement imports only the randint() function
from the random library?

Question 8d

What will the value of the inbuilt variables width and
height be after the following code is run?

setCanvasSize(200, 100)

40

Check Your Knowledge Answers - Task 8

Question 8a

The “*” represents the entire library. Hence the “from” statement above imports the
entire random library into the program.

Question 8b

The variable x will store a random integer between 1 and 100.

Question 8c

from random import randint

Question 8d

The variable width will store the value 200 and the variable height will store the value
100.

41

Task 9 - Bouncing Ball
Animation

Once again it is time to put our skills to the test. Our task is to create the classic
bouncing ball program. The ball should move around the screen and bounce off the
edges of our canvas. Here is the starter code for this task:

setCanvasSize(800, 400)
fill(255, 128, 128)
x = 320
y = 180

forever:
background(0, 0, 0)
circle(x, y, 30)
sleep(0.005)

If you type this into the PyAngelo editor and run the program you will see the following
drawn to the canvas:

42

Task 9 Challenge

Modify the program so that the ball:
● Starts moving in a random direction
● Bounces off the edges of the canvas
● Changes to a random colour each time it bounces on the edge

If you need help with this challenge then watch the associated video on the PyAngelo
website:
https://www.pyangelo.com/tutorials/animating-shapes/bouncing-ball-animation

https://www.pyangelo.com/tutorials/animating-shapes/bouncing-ball-animation

43

Check Your Knowledge - Task 9

Question 9a

What does the following if statement check? Assume
the variable y is used to hold the y position of the
centre of the ball.

if y >= height - radius:
yDir = yDir * -1

Question 9b

What does the following if statement check? Assume
the variable y is used to hold the y position of the
centre of the ball.

if y < radius:
yDir = yDir * -1

Question 9c

Explain what the purpose of the following line of code
is:

yDir = yDir * -1

44

Check Your Knowledge Answers - Task 9

Question 9a

The if statement is checking if the ball has moved past the top of the canvas.

Question 9b

The if statement is checking if the ball have moved past the bottom of the canvas.

Question 9c

This changes the sign of the yDir variable. Assuming the yDir variable is used to change
the y-position of the ball, the line of code would reverse the vertical direction of the ball.
For example if yDir was equal to 2, then the line of code would change it to -2 and if yDir
was -2 then it would be changed to 2.

45

Task 10 - Two Bouncing
Balls

As a last extension task in this series on animating shapes, see if you can create a
program that has 2 bouncing balls moving around the canvas. Note that you can
essentially duplicate the code used for a single ball but you must then rename all of the
variables. One way to do this would be instead of having x and y variables, to have x1,
x2, y1, and y2 variables. This might be OK for 2 balls but what if you have 100 balls?
Whenever you find coding a lot of work there is usually a cleaner solution. However, this
is still a good exercise for you to complete. Once you have done this the hard way you
can move onto the next tutorial series called Animation with Sprites which will introduce
you to the world of object oriented programming and show you a neat way to eliminate
the need for so many variables. Combine this with the power of lists in Python and you
can easily create a program with 100 bouncing balls!

